MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. Grade CX2M Nickel

5088 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 29
45
Fatigue Strength, MPa 180
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 310
550
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 540
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 9.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 51
2.7
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
22 to 24
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
0 to 1.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0