MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. SAE-AISI 9255 Steel

5088 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9255 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is SAE-AISI 9255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 29
21
Fatigue Strength, MPa 180
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Shear Strength, MPa 200
430
Tensile Strength: Ultimate (UTS), MPa 310
680
Tensile Strength: Yield (Proof), MPa 150
390

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 98
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 51
13
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
96.2 to 97
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0