MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. C64210 Bronze

5088 aluminum belongs to the aluminum alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 29
35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
42
Shear Strength, MPa 200
380
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 150
290

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 540
990
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
13
Electrical Conductivity: Equal Weight (Specific), % IACS 98
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 9.0
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 51
13
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
89 to 92.2
Iron (Fe), % 0.1 to 0.35
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.2
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0.2 to 0.4
0 to 0.5
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5