MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. C67300 Bronze

5088 aluminum belongs to the aluminum alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 29
12
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
41
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 310
500
Tensile Strength: Yield (Proof), MPa 150
340

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 640
870
Melting Onset (Solidus), °C 540
830
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
95
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
22
Electrical Conductivity: Equal Weight (Specific), % IACS 98
25

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
55
Resilience: Unit (Modulus of Resilience), kJ/m3 170
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 51
30
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.25
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
58 to 63
Iron (Fe), % 0.1 to 0.35
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.2
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0.2 to 0.4
27.2 to 39.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5