MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. C93400 Bronze

5088 aluminum belongs to the aluminum alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 29
9.1
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 25
38
Tensile Strength: Ultimate (UTS), MPa 310
270
Tensile Strength: Yield (Proof), MPa 150
150

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 200
150
Melting Completion (Liquidus), °C 640
950
Melting Onset (Solidus), °C 540
850
Specific Heat Capacity, J/kg-K 900
350
Thermal Conductivity, W/m-K 120
58
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
12
Electrical Conductivity: Equal Weight (Specific), % IACS 98
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.0
3.3
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1180
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
21
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 50
17
Strength to Weight: Axial, points 32
8.3
Strength to Weight: Bending, points 38
10
Thermal Diffusivity, mm2/s 51
18
Thermal Shock Resistance, points 14
10

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
82 to 85
Iron (Fe), % 0.1 to 0.35
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0.2 to 0.4
0 to 0.8
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 1.0