MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. N06058 Nickel

5088 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 29
45
Fatigue Strength, MPa 180
350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
86
Shear Strength, MPa 200
600
Tensile Strength: Ultimate (UTS), MPa 310
860
Tensile Strength: Yield (Proof), MPa 150
410

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 640
1540
Melting Onset (Solidus), °C 540
1490
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 9.0
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
320
Resilience: Unit (Modulus of Resilience), kJ/m3 170
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
27
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 51
2.6
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.15
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0.1 to 0.35
0 to 1.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0