MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. N06920 Nickel

5088 aluminum belongs to the aluminum alloys classification, while N06920 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 29
39
Fatigue Strength, MPa 180
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
82
Shear Strength, MPa 200
500
Tensile Strength: Ultimate (UTS), MPa 310
730
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 540
1440
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 9.0
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
230
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 51
2.8
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
17 to 20
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0