MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. S46800 Stainless Steel

5088 aluminum belongs to the aluminum alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 29
25
Fatigue Strength, MPa 180
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 200
300
Tensile Strength: Ultimate (UTS), MPa 310
470
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 200
920
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 51
6.1
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
18 to 20
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
76.5 to 81.8
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0