MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. Z41321 Zinc

5088 aluminum belongs to the aluminum alloys classification, while Z41321 zinc belongs to the zinc alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is Z41321 zinc.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
87
Elongation at Break, % 29
60
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 25
35
Tensile Strength: Ultimate (UTS), MPa 310
190
Tensile Strength: Yield (Proof), MPa 150
150

Thermal Properties

Latent Heat of Fusion, J/g 390
110
Maximum Temperature: Mechanical, °C 200
90
Melting Completion (Liquidus), °C 640
410
Melting Onset (Solidus), °C 540
400
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
27
Electrical Conductivity: Equal Weight (Specific), % IACS 98
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
6.6
Embodied Carbon, kg CO2/kg material 9.0
2.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
7.9
Strength to Weight: Bending, points 38
11
Thermal Diffusivity, mm2/s 51
44
Thermal Shock Resistance, points 14
5.9

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.010
Cadmium (Cd), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0.5 to 1.0
Iron (Fe), % 0.1 to 0.35
0 to 0.010
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0
0.080 to 0.18
Zinc (Zn), % 0.2 to 0.4
98.8 to 99.42
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0