MakeItFrom.com
Menu (ESC)

50Cr-50Ni-Cb Alloy vs. 1100A Aluminum

50Cr-50Ni-Cb alloy belongs to the otherwise unclassified metals classification, while 1100A aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 50Cr-50Ni-Cb alloy and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 5.6
4.5 to 34
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 620
89 to 170
Tensile Strength: Yield (Proof), MPa 390
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 9.2
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 370
5.9 to 150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
9.1 to 17
Strength to Weight: Bending, points 20
16 to 25
Thermal Shock Resistance, points 14
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0 to 0.25
99 to 100
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 47 to 52
0
Copper (Cu), % 0
0.050 to 0.2
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.3
0 to 0.050
Nickel (Ni), % 43.3 to 51.6
0
Niobium (Nb), % 1.4 to 1.7
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.5
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15