MakeItFrom.com
Menu (ESC)

50Cr-50Ni-Cb Alloy vs. 5254 Aluminum

50Cr-50Ni-Cb alloy belongs to the otherwise unclassified metals classification, while 5254 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 50Cr-50Ni-Cb alloy and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 5.6
3.4 to 22
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 620
240 to 350
Tensile Strength: Yield (Proof), MPa 390
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 9.2
8.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 370
73 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
25 to 37
Strength to Weight: Bending, points 20
32 to 41
Thermal Shock Resistance, points 14
10 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.25
94.4 to 96.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 47 to 52
0.15 to 0.35
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.45
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 0.3
0 to 0.010
Nickel (Ni), % 43.3 to 51.6
0
Niobium (Nb), % 1.4 to 1.7
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.5
0 to 0.050
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15