MakeItFrom.com
Menu (ESC)

50Cr-50Ni Alloy vs. 5652 Aluminum

50Cr-50Ni alloy belongs to the otherwise unclassified metals classification, while 5652 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 50Cr-50Ni alloy and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 5.7
6.8 to 25
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 620
190 to 290
Tensile Strength: Yield (Proof), MPa 390
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.6
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 350
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 350
40 to 480
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
20 to 30
Strength to Weight: Bending, points 20
27 to 36
Thermal Shock Resistance, points 14
8.4 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.25
95.8 to 97.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0.15 to 0.35
Copper (Cu), % 0
0 to 0.040
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.3
0 to 0.010
Nickel (Ni), % 44.5 to 52
0
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15