MakeItFrom.com
Menu (ESC)

50Cr-50Ni Alloy vs. Sintered 6061 Aluminum

50Cr-50Ni alloy belongs to the otherwise unclassified metals classification, while sintered 6061 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 50Cr-50Ni alloy and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 5.7
0.5 to 6.0
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
25
Tensile Strength: Ultimate (UTS), MPa 620
83 to 210
Tensile Strength: Yield (Proof), MPa 390
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Specific Heat Capacity, J/kg-K 490
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 350
28 to 280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 21
8.6 to 21
Strength to Weight: Bending, points 20
16 to 29
Thermal Shock Resistance, points 14
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 0 to 0.25
96 to 99.4
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 0 to 1.0
0
Magnesium (Mg), % 0
0.4 to 1.2
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 44.5 to 52
0
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.5
0
Residuals, % 0
0 to 1.5