MakeItFrom.com
Menu (ESC)

5110A Aluminum vs. 332.0 Aluminum

Both 5110A aluminum and 332.0 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5110A aluminum and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 4.5 to 28
1.0
Fatigue Strength, MPa 37 to 77
90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 66 to 110
190
Tensile Strength: Ultimate (UTS), MPa 100 to 190
250
Tensile Strength: Yield (Proof), MPa 32 to 170
190

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 640
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 220
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
26
Electrical Conductivity: Equal Weight (Specific), % IACS 190
84

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 22
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 7.6 to 200
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 10 to 19
24
Strength to Weight: Bending, points 18 to 27
31
Thermal Diffusivity, mm2/s 91
42
Thermal Shock Resistance, points 4.5 to 8.4
12

Alloy Composition

Aluminum (Al), % 98.5 to 99.8
80.1 to 89
Copper (Cu), % 0 to 0.2
2.0 to 4.0
Iron (Fe), % 0 to 0.25
0 to 1.2
Magnesium (Mg), % 0.2 to 0.6
0.5 to 1.5
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.15
8.5 to 10.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.030
0 to 1.0
Residuals, % 0
0 to 0.5