MakeItFrom.com
Menu (ESC)

5110A Aluminum vs. EN 1.8879 Steel

5110A aluminum belongs to the aluminum alloys classification, while EN 1.8879 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5110A aluminum and the bottom bar is EN 1.8879 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 28
16
Fatigue Strength, MPa 37 to 77
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 66 to 110
510
Tensile Strength: Ultimate (UTS), MPa 100 to 190
830
Tensile Strength: Yield (Proof), MPa 32 to 170
710

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 220
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 190
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1190
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 7.6 to 200
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 10 to 19
29
Strength to Weight: Bending, points 18 to 27
25
Thermal Diffusivity, mm2/s 91
11
Thermal Shock Resistance, points 4.5 to 8.4
24

Alloy Composition

Aluminum (Al), % 98.5 to 99.8
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.25
91.9 to 100
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.030
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.1
0