MakeItFrom.com
Menu (ESC)

5110A Aluminum vs. EN AC-45100 Aluminum

Both 5110A aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5110A aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 4.5 to 28
1.0 to 2.8
Fatigue Strength, MPa 37 to 77
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 100 to 190
300 to 360
Tensile Strength: Yield (Proof), MPa 32 to 170
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 640
550
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 220
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
30
Electrical Conductivity: Equal Weight (Specific), % IACS 190
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 22
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 7.6 to 200
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 10 to 19
30 to 35
Strength to Weight: Bending, points 18 to 27
35 to 39
Thermal Diffusivity, mm2/s 91
54
Thermal Shock Resistance, points 4.5 to 8.4
14 to 16

Alloy Composition

Aluminum (Al), % 98.5 to 99.8
88 to 92.8
Copper (Cu), % 0 to 0.2
2.6 to 3.6
Iron (Fe), % 0 to 0.25
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.2 to 0.6
0.15 to 0.45
Manganese (Mn), % 0 to 0.2
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.15
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.030
0 to 0.2
Residuals, % 0
0 to 0.15