MakeItFrom.com
Menu (ESC)

5110A Aluminum vs. EN AC-48100 Aluminum

Both 5110A aluminum and EN AC-48100 aluminum are aluminum alloys. They have 77% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5110A aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
76
Elongation at Break, % 4.5 to 28
1.1
Fatigue Strength, MPa 37 to 77
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 100 to 190
240 to 330
Tensile Strength: Yield (Proof), MPa 32 to 170
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
640
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 640
470
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 220
130
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
27
Electrical Conductivity: Equal Weight (Specific), % IACS 190
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1190
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 22
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 7.6 to 200
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 10 to 19
24 to 33
Strength to Weight: Bending, points 18 to 27
31 to 38
Thermal Diffusivity, mm2/s 91
55
Thermal Shock Resistance, points 4.5 to 8.4
11 to 16

Alloy Composition

Aluminum (Al), % 98.5 to 99.8
72.1 to 79.8
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 0.25
0 to 1.3
Magnesium (Mg), % 0.2 to 0.6
0.25 to 0.65
Manganese (Mn), % 0 to 0.2
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.15
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.030
0 to 1.5
Residuals, % 0
0 to 0.25