MakeItFrom.com
Menu (ESC)

5110A Aluminum vs. Nickel 718

5110A aluminum belongs to the aluminum alloys classification, while nickel 718 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5110A aluminum and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 28
12 to 50
Fatigue Strength, MPa 37 to 77
460 to 760
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 66 to 110
660 to 950
Tensile Strength: Ultimate (UTS), MPa 100 to 190
930 to 1530
Tensile Strength: Yield (Proof), MPa 32 to 170
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 640
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 220
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 190
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 22
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 7.6 to 200
660 to 4560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 10 to 19
31 to 51
Strength to Weight: Bending, points 18 to 27
25 to 35
Thermal Diffusivity, mm2/s 91
3.0
Thermal Shock Resistance, points 4.5 to 8.4
27 to 44

Alloy Composition

Aluminum (Al), % 98.5 to 99.8
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.25
11.1 to 24.6
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.1
0