MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. AWS E80C-Ni3

5154 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 20
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 240 to 360
630
Tensile Strength: Yield (Proof), MPa 94 to 270
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
160
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
22
Strength to Weight: Bending, points 32 to 42
21
Thermal Diffusivity, mm2/s 52
14
Thermal Shock Resistance, points 10 to 16
19

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.4
92.8 to 97.3
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
2.8 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5