MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. EN 1.0599 Steel

5154 aluminum belongs to the aluminum alloys classification, while EN 1.0599 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is EN 1.0599 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 20
20
Fatigue Strength, MPa 100 to 160
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 210
390
Tensile Strength: Ultimate (UTS), MPa 240 to 360
620
Tensile Strength: Yield (Proof), MPa 94 to 270
440

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
110
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
520
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
22
Strength to Weight: Bending, points 32 to 42
21
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 10 to 16
20

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0.010 to 0.050
Carbon (C), % 0
0.16 to 0.22
Chromium (Cr), % 0.15 to 0.35
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
96.1 to 98.4
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0.1 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0