MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. EN 1.7729 Steel

5154 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 20
17
Fatigue Strength, MPa 100 to 160
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 210
560
Tensile Strength: Ultimate (UTS), MPa 240 to 360
910
Tensile Strength: Yield (Proof), MPa 94 to 270
750

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
150
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
32
Strength to Weight: Bending, points 32 to 42
27
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 10 to 16
27

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0.15 to 0.35
0.9 to 1.2
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
94.8 to 97
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0