MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. EN AC-48000 Aluminum

Both 5154 aluminum and EN AC-48000 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 3.4 to 20
1.0
Fatigue Strength, MPa 100 to 160
85 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 240 to 360
220 to 310
Tensile Strength: Yield (Proof), MPa 94 to 270
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
7.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 25 to 37
23 to 33
Strength to Weight: Bending, points 32 to 42
31 to 39
Thermal Diffusivity, mm2/s 52
54
Thermal Shock Resistance, points 10 to 16
10 to 15

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
80.4 to 87.2
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0.8 to 1.5
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 3.1 to 3.9
0.8 to 1.5
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
0.7 to 1.3
Silicon (Si), % 0 to 0.25
10.5 to 13.5
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.35
Residuals, % 0
0 to 0.15