MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. Grade 7 Titanium

5154 aluminum belongs to the aluminum alloys classification, while grade 7 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is grade 7 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 3.4 to 20
24
Fatigue Strength, MPa 100 to 160
250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
38
Shear Strength, MPa 140 to 210
270
Tensile Strength: Ultimate (UTS), MPa 240 to 360
420
Tensile Strength: Yield (Proof), MPa 94 to 270
340

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 190
320
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 590
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
7.2

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.8
47
Embodied Energy, MJ/kg 150
800
Embodied Water, L/kg 1180
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
95
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 25 to 37
26
Strength to Weight: Bending, points 32 to 42
28
Thermal Diffusivity, mm2/s 52
8.9
Thermal Shock Resistance, points 10 to 16
31

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.3
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.12 to 0.25
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
98.7 to 99.88
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4