MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. SAE-AISI 81B45 Steel

5154 aluminum belongs to the aluminum alloys classification, while SAE-AISI 81B45 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is SAE-AISI 81B45 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 20
12 to 24
Fatigue Strength, MPa 100 to 160
250 to 350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 210
340 to 400
Tensile Strength: Ultimate (UTS), MPa 240 to 360
540 to 670
Tensile Strength: Yield (Proof), MPa 94 to 270
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
77 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
320 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
19 to 24
Strength to Weight: Bending, points 32 to 42
19 to 22
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 10 to 16
17 to 21

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.43 to 0.48
Chromium (Cr), % 0.15 to 0.35
0.35 to 0.55
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
97 to 98
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0.75 to 1.0
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants