MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. C27000 Brass

5154 aluminum belongs to the aluminum alloys classification, while C27000 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is C27000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 240 to 360
370 to 650

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 590
900
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 25 to 37
13 to 22
Strength to Weight: Bending, points 32 to 42
14 to 21
Thermal Diffusivity, mm2/s 52
37
Thermal Shock Resistance, points 10 to 16
12 to 22

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
63 to 68.5
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
31 to 37
Residuals, % 0
0 to 0.3