MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. C41300 Brass

5154 aluminum belongs to the aluminum alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 3.4 to 20
2.0 to 44
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 140 to 210
230 to 370
Tensile Strength: Ultimate (UTS), MPa 240 to 360
300 to 630
Tensile Strength: Yield (Proof), MPa 94 to 270
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 590
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 25 to 37
9.6 to 20
Strength to Weight: Bending, points 32 to 42
11 to 19
Thermal Diffusivity, mm2/s 52
40
Thermal Shock Resistance, points 10 to 16
11 to 22

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
89 to 93
Iron (Fe), % 0 to 0.4
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
5.1 to 10.3
Residuals, % 0
0 to 0.5