MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. N06035 Nickel

5154 aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 3.4 to 20
34
Fatigue Strength, MPa 100 to 160
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
84
Shear Strength, MPa 140 to 210
440
Tensile Strength: Ultimate (UTS), MPa 240 to 360
660
Tensile Strength: Yield (Proof), MPa 94 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 190
1030
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
180
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
22
Strength to Weight: Bending, points 32 to 42
20
Thermal Shock Resistance, points 10 to 16
17

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.15 to 0.35
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0