MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. S32050 Stainless Steel

5154 aluminum belongs to the aluminum alloys classification, while S32050 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 3.4 to 20
46
Fatigue Strength, MPa 100 to 160
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 140 to 210
540
Tensile Strength: Ultimate (UTS), MPa 240 to 360
770
Tensile Strength: Yield (Proof), MPa 94 to 270
370

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.8
6.0
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
290
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 25 to 37
27
Strength to Weight: Bending, points 32 to 42
23
Thermal Diffusivity, mm2/s 52
3.3
Thermal Shock Resistance, points 10 to 16
17

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.35
22 to 24
Copper (Cu), % 0 to 0.1
0 to 0.4
Iron (Fe), % 0 to 0.4
43.1 to 51.8
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0