MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. ASTM A182 Grade F10

5154A aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 19
34
Fatigue Strength, MPa 83 to 160
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 140 to 210
420
Tensile Strength: Ultimate (UTS), MPa 230 to 370
630
Tensile Strength: Yield (Proof), MPa 96 to 320
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
600
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
15
Electrical Conductivity: Equal Weight (Specific), % IACS 110
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
170
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 38
22
Strength to Weight: Bending, points 31 to 43
21
Thermal Shock Resistance, points 10 to 16
18

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.25
7.0 to 9.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
66.5 to 72.4
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0