MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. AZ80A Magnesium

5154A aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
46
Elongation at Break, % 1.1 to 19
3.9 to 8.5
Fatigue Strength, MPa 83 to 160
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 140 to 210
160 to 190
Tensile Strength: Ultimate (UTS), MPa 230 to 370
320 to 340
Tensile Strength: Yield (Proof), MPa 96 to 320
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
490
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 130
77
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.8
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
500 to 600
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
69
Strength to Weight: Axial, points 24 to 38
51 to 55
Strength to Weight: Bending, points 31 to 43
60 to 63
Thermal Diffusivity, mm2/s 53
45
Thermal Shock Resistance, points 10 to 16
19 to 20

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
7.8 to 9.2
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.0050
Magnesium (Mg), % 3.1 to 3.9
89 to 91.9
Manganese (Mn), % 0 to 0.5
0.12 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0.2 to 0.8
Residuals, % 0
0 to 0.3

Comparable Variants