MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.4518 Stainless Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.4518 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 19
34
Fatigue Strength, MPa 83 to 160
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 230 to 370
490
Tensile Strength: Yield (Proof), MPa 96 to 320
210

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
140
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 38
17
Strength to Weight: Bending, points 31 to 43
18
Thermal Diffusivity, mm2/s 53
4.1
Thermal Shock Resistance, points 10 to 16
14

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
18 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
61.4 to 70
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0