MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.4592 Stainless Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 19
23
Fatigue Strength, MPa 83 to 160
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 140 to 210
400
Tensile Strength: Ultimate (UTS), MPa 230 to 370
630
Tensile Strength: Yield (Proof), MPa 96 to 320
500

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
3.8
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
130
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
610
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 24 to 38
23
Strength to Weight: Bending, points 31 to 43
21
Thermal Diffusivity, mm2/s 53
4.6
Thermal Shock Resistance, points 10 to 16
20

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.25
28 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
62.6 to 68.4
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.15 to 0.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0