MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.4807 Stainless Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 19
4.5
Fatigue Strength, MPa 83 to 160
120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 230 to 370
480
Tensile Strength: Yield (Proof), MPa 96 to 320
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 600
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.8
6.8
Embodied Energy, MJ/kg 150
97
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
18
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 38
17
Strength to Weight: Bending, points 31 to 43
17
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 10 to 16
12

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.25
17 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
36.6 to 46.7
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0