MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.4821 Stainless Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.4821 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.4821 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
200
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 19
18
Fatigue Strength, MPa 83 to 160
280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 140 to 210
450
Tensile Strength: Ultimate (UTS), MPa 230 to 370
730
Tensile Strength: Yield (Proof), MPa 96 to 320
450

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 24 to 38
26
Strength to Weight: Bending, points 31 to 43
23
Thermal Diffusivity, mm2/s 53
4.6
Thermal Shock Resistance, points 10 to 16
21

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.25
24.5 to 26.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
64.2 to 71.1
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0.8 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0