MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.5535 Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 19
11 to 22
Fatigue Strength, MPa 83 to 160
210 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 210
320 to 370
Tensile Strength: Ultimate (UTS), MPa 230 to 370
450 to 1490
Tensile Strength: Yield (Proof), MPa 96 to 320
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
240 to 680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 38
16 to 53
Strength to Weight: Bending, points 31 to 43
17 to 37
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 10 to 16
13 to 44

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
97.6 to 98.9
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0