MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN 1.5918 Steel

5154A aluminum belongs to the aluminum alloys classification, while EN 1.5918 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN 1.5918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
160 to 190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 230 to 370
530 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
440
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
56

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 24 to 38
19 to 49
Strength to Weight: Bending, points 31 to 43
18 to 35
Thermal Diffusivity, mm2/s 53
12
Thermal Shock Resistance, points 10 to 16
15 to 41

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0.14 to 0.2
Chromium (Cr), % 0 to 0.25
1.4 to 1.7
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
94.9 to 96.6
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.9
Nickel (Ni), % 0
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0