MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. Grade 38 Titanium

5154A aluminum belongs to the aluminum alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 19
11
Fatigue Strength, MPa 83 to 160
530
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 140 to 210
600
Tensile Strength: Ultimate (UTS), MPa 230 to 370
1000
Tensile Strength: Yield (Proof), MPa 96 to 320
910

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 650
1620
Melting Onset (Solidus), °C 600
1570
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 130
8.0
Thermal Expansion, µm/m-K 24
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.8
35
Embodied Energy, MJ/kg 150
560
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
3840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 24 to 38
62
Strength to Weight: Bending, points 31 to 43
49
Thermal Diffusivity, mm2/s 53
3.2
Thermal Shock Resistance, points 10 to 16
72

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
3.5 to 4.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
1.2 to 1.8
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.2
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4