MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. Grade CZ100 Nickel

5154A aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 1.1 to 19
11
Fatigue Strength, MPa 83 to 160
68
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
69
Tensile Strength: Ultimate (UTS), MPa 230 to 370
390
Tensile Strength: Yield (Proof), MPa 96 to 320
140

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
73
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
19
Electrical Conductivity: Equal Weight (Specific), % IACS 110
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
35
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
54
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 24 to 38
12
Strength to Weight: Bending, points 31 to 43
14
Thermal Diffusivity, mm2/s 53
19
Thermal Shock Resistance, points 10 to 16
14

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0 to 1.0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 1.3
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0