MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. C44500 Brass

5154A aluminum belongs to the aluminum alloys classification, while C44500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 230 to 370
350
Tensile Strength: Yield (Proof), MPa 96 to 320
120

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 190
140
Melting Completion (Liquidus), °C 650
940
Melting Onset (Solidus), °C 600
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
65
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 24 to 38
12
Strength to Weight: Bending, points 31 to 43
13
Thermal Diffusivity, mm2/s 53
35
Thermal Shock Resistance, points 10 to 16
12

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
70 to 73
Iron (Fe), % 0 to 0.5
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0
Phosphorus (P), % 0
0.020 to 0.1
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
25.2 to 29.1
Residuals, % 0
0 to 0.4