MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. C52100 Bronze

5154A aluminum belongs to the aluminum alloys classification, while C52100 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 230 to 370
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 600
880
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
62
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.8
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
370

Common Calculations

Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 24 to 38
12 to 25
Strength to Weight: Bending, points 31 to 43
13 to 22
Thermal Diffusivity, mm2/s 53
19
Thermal Shock Resistance, points 10 to 16
14 to 28

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
89.8 to 93
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
7.0 to 9.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0
0 to 0.5