MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. C82600 Copper

5154A aluminum belongs to the aluminum alloys classification, while C82600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 1.1 to 19
1.0 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 230 to 370
570 to 1140
Tensile Strength: Yield (Proof), MPa 96 to 320
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 190
300
Melting Completion (Liquidus), °C 650
950
Melting Onset (Solidus), °C 600
860
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
19
Electrical Conductivity: Equal Weight (Specific), % IACS 110
20

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
11
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
430 to 4690
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 24 to 38
18 to 36
Strength to Weight: Bending, points 31 to 43
17 to 28
Thermal Diffusivity, mm2/s 53
37
Thermal Shock Resistance, points 10 to 16
19 to 39

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Chromium (Cr), % 0 to 0.25
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0 to 0.1
94.9 to 97.2
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.12
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.5

Comparable Variants