MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. R30556 Alloy

5154A aluminum belongs to the aluminum alloys classification, while R30556 alloy belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 19
45
Fatigue Strength, MPa 83 to 160
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 140 to 210
550
Tensile Strength: Ultimate (UTS), MPa 230 to 370
780
Tensile Strength: Yield (Proof), MPa 96 to 320
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.8
8.7
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
290
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 24 to 38
26
Strength to Weight: Bending, points 31 to 43
22
Thermal Diffusivity, mm2/s 53
2.9
Thermal Shock Resistance, points 10 to 16
18

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.25
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0 to 0.2
0.0010 to 0.1
Residuals, % 0 to 0.15
0