MakeItFrom.com
Menu (ESC)

5154A-O Aluminum vs. Annealed AISI 201L

5154A-O aluminum belongs to the aluminum alloys classification, while annealed AISI 201L belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5154A-O aluminum and the bottom bar is annealed AISI 201L.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58
190
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 19
45
Fatigue Strength, MPa 100
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 150
520
Tensile Strength: Ultimate (UTS), MPa 240
740
Tensile Strength: Yield (Proof), MPa 96
290

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
270
Resilience: Unit (Modulus of Resilience), kJ/m3 68
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 31
24
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 10
16

Alloy Composition

Aluminum (Al), % 93.7 to 96.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
67.9 to 75
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.5
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0