MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. 443.0 Aluminum

Both 5182 aluminum and 443.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 12
5.6
Fatigue Strength, MPa 100 to 130
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Shear Strength, MPa 170 to 240
96
Tensile Strength: Ultimate (UTS), MPa 280 to 420
150
Tensile Strength: Yield (Proof), MPa 130 to 360
65

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
38
Electrical Conductivity: Equal Weight (Specific), % IACS 94
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
30
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
52
Strength to Weight: Axial, points 29 to 44
16
Strength to Weight: Bending, points 36 to 47
23
Thermal Diffusivity, mm2/s 53
61
Thermal Shock Resistance, points 12 to 19
6.9

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
90.7 to 95.5
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0 to 0.15
0 to 0.6
Iron (Fe), % 0 to 0.35
0 to 0.8
Magnesium (Mg), % 4.0 to 5.0
0 to 0.050
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Silicon (Si), % 0 to 0.2
4.5 to 6.0
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0
0 to 0.35