MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. ACI-ASTM CN7M Steel

5182 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 12
44
Fatigue Strength, MPa 100 to 130
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 280 to 420
480
Tensile Strength: Yield (Proof), MPa 130 to 360
200

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 590
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 94
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.9
5.6
Embodied Energy, MJ/kg 150
78
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 29 to 44
17
Strength to Weight: Bending, points 36 to 47
17
Thermal Diffusivity, mm2/s 53
5.6
Thermal Shock Resistance, points 12 to 19
12

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
19 to 22
Copper (Cu), % 0 to 0.15
3.0 to 4.0
Iron (Fe), % 0 to 0.35
37.4 to 48.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0