MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN 1.4477 Stainless Steel

5182 aluminum belongs to the aluminum alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 12
22 to 23
Fatigue Strength, MPa 100 to 130
420 to 490
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
81
Shear Strength, MPa 170 to 240
550 to 580
Tensile Strength: Ultimate (UTS), MPa 280 to 420
880 to 930
Tensile Strength: Yield (Proof), MPa 130 to 360
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 94
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
940 to 1290
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 29 to 44
31 to 33
Strength to Weight: Bending, points 36 to 47
26 to 27
Thermal Diffusivity, mm2/s 53
3.5
Thermal Shock Resistance, points 12 to 19
23 to 25

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
28 to 30
Copper (Cu), % 0 to 0.15
0 to 0.8
Iron (Fe), % 0 to 0.35
56.6 to 63.6
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0