MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN 1.4825 Stainless Steel

5182 aluminum belongs to the aluminum alloys classification, while EN 1.4825 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN 1.4825 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 12
17
Fatigue Strength, MPa 100 to 130
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 280 to 420
510
Tensile Strength: Yield (Proof), MPa 130 to 360
260

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 94
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
72
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 29 to 44
18
Strength to Weight: Bending, points 36 to 47
18
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 12 to 19
12

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0.15 to 0.35
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
65.6 to 74.4
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0