MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN 1.7706 Steel

5182 aluminum belongs to the aluminum alloys classification, while EN 1.7706 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN 1.7706 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 12
17
Fatigue Strength, MPa 100 to 130
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 280 to 420
690
Tensile Strength: Yield (Proof), MPa 130 to 360
500

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 94
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1180
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 29 to 44
24
Strength to Weight: Bending, points 36 to 47
22
Thermal Diffusivity, mm2/s 53
11
Thermal Shock Resistance, points 12 to 19
20

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.1
1.2 to 1.5
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 0 to 0.35
94.7 to 97.1
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0