MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN AC-43300 Aluminum

Both 5182 aluminum and EN AC-43300 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 12
3.4 to 6.7
Fatigue Strength, MPa 100 to 130
76 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 280 to 420
280 to 290
Tensile Strength: Yield (Proof), MPa 130 to 360
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
40
Electrical Conductivity: Equal Weight (Specific), % IACS 94
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.9
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
54
Strength to Weight: Axial, points 29 to 44
31 to 32
Strength to Weight: Bending, points 36 to 47
37 to 38
Thermal Diffusivity, mm2/s 53
59
Thermal Shock Resistance, points 12 to 19
13 to 14

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
88.9 to 90.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0 to 0.050
Iron (Fe), % 0 to 0.35
0 to 0.19
Magnesium (Mg), % 4.0 to 5.0
0.25 to 0.45
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.2
9.0 to 10
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.070
Residuals, % 0
0 to 0.1