MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN AC-46400 Aluminum

Both 5182 aluminum and EN AC-46400 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.1 to 12
1.1 to 1.7
Fatigue Strength, MPa 100 to 130
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 280 to 420
170 to 310
Tensile Strength: Yield (Proof), MPa 130 to 360
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
520
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
33
Electrical Conductivity: Equal Weight (Specific), % IACS 94
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
52
Strength to Weight: Axial, points 29 to 44
18 to 32
Strength to Weight: Bending, points 36 to 47
26 to 38
Thermal Diffusivity, mm2/s 53
55
Thermal Shock Resistance, points 12 to 19
7.8 to 14

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
85.4 to 90.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0.8 to 1.3
Iron (Fe), % 0 to 0.35
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 4.0 to 5.0
0.25 to 0.65
Manganese (Mn), % 0.2 to 0.5
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.8
Residuals, % 0
0 to 0.25